正誤表

生物物理 53 巻 Supplement1-1 第 51 回年会プログラム集

ページ・位置	内容	誤	正
(\$5),\$6	シンポジウム 1SCP	Challenges to in vivo biophysicss	Challenges to in vivo biophysics
S5	シンポジウム 1SBP	Masaki Taniguchi	Masateru Taniguchi
S78	ポスター演題番号	3P271	2P183
落丁	ポスター演題番号 (抄録は次ページ)		1P117

年会プログラム集 (冊子版) に上記の誤りがありました。 訂正し、お詫び申し上げます。

第51回年会実行委員会

1P117 Single Nucleosome under Tension and Torsion

Jen-Chien Chang¹, Michel de Messieres², Arthur La Porta¹ (¹Dept. Phys., University of Maryland, USA, ²National Institute of Health, Bethesda, MD, USA)

The fundamental chromatin packing unit in eukaryotes is the nucleosome. Prior single-molecule experiments have exerted linear tension to stretch both chromatin fibers and mononucleosome, which have given information on the nature of the free-energy barrier for a particular disruption pathway. We develop a theoretical model including torsional constraints, which suggests that the disruption pathway may be sensitive to the torsional loading of the nucleosome. Experimentally we apply force and torque simultaneously to disrupt a mononucleosome using an optical torque wrench. Positive supercoiling is found to destabilize the nucleosome while negative supercoiling has little effect, which is consistent with our model.